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Abstract

SiC-based high temperature power devices are being developed for aerospace systems which require high

reliability. To date, it has necessarily been assumed that the breakdown behavior of SiC pn junctions will be similar

to highly reliable silicon-based pn junctions. Challenging this assumption, we report the observation of anomalous
unreliable reverse breakdown behavior in moderately doped (2-3 x 1017 cm "3) small-area 4H- and 6H-SiC pn junction

diodes at temperatures ranging from 298 K (25 °C) to 873 K (600 °C). We propose a mechanism in which carrier

emission from un-ionized dopants and/or deep level defects leads to this unstable behavior.

INTRODUCTION

The inherent physical properties of silicon carbide (SIC) appear to be extremely well suited for power
semiconductor electronic devices. Theoretical appraisals of the characteristics and applications of SiC power devices

have suggested that once silicon carbide technology matures sufficiently to overcome some developmental obstacles,

SiC may supplant silicon in many high-power electronic applications (Baliga, 1994; Bhatnagar and Baliga, 1993).

However, these analyses are primarily based on the numerical substitution of SiC physical properties into existing
semiconductor device models. These models have limitations however, as they clearly do not take into account all

behaviors of an actual SiC device. One behavior crucial to power device reliability that has necessarily been assumed

to date is that the breakdown behavior of SiC pn junctions will (after technology improvements eliminate all

crystalline defects such as micropipes) be similar to silicon-based pn junctions. Silicon pn junctions are highly

reliable because they exhibit stabilizing properties such as positive temperature coefficient of breakdown voltage

(Bell Laboratories, 1984; Ricketts et al., 1976; Sze, 1981). The experimental work presented in this paper casts
some doubt upon the presumption of silicon-like breakdown behavior for all SiC pn junctions.

EXPERIMENTAL

Device Fabrication & DC Testine

The SiC homoepilayer structure shown in Figure 1 was

grown at NASA Lewis on substrates cut from commercially in
n

available p+ 4H and 6H silicon-face SiC substrates polished 3 ° to I4 ° off the (0001) SiC basal plane. The growth and device

fabrication procedures used are described elsewhere (Neudeck et al.,
1994). Processing of the 4H and 6H samples was done in parallel,

with pattern definitions, E-beam deposited metallizations (A1 etch /mask, Au contacts), etches (RIE), and oxidations (4 hr., 1423 K,

wet 02) being done simultaneously.

Room-temperature 1 MHz capacitance-voltage measurements

on large-area diodes estimated the 0.6 I.tm thick n-layer doping at
2 x 1017 cm "3 and 3 x 1017 cm "3 for the 4H and 6H devices,

respectively. Over 50 devices were dc tested at room temperature,
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Fig. I. 4H- and 6H-SiC pn Junction Diode
Cross-Section.



and typical semi-logarithmic scale reverse characteristics are shown in
Figure 2. Since crystal defect densities of SiC epilayers on

• 4 -2
commercial wafers are known to be on the order of 10 cm , only
devices with areas less than 5 x 10 .5 cm 2 were selected for this work,

so that around half should be free of micropipes and dislocations

(Wang et al., 1994). Furthermore, any diode showing dc
characteristics that deviated in leakage current or sharpness of

breakdown knee from the Fig. 2 characteristics was thrown out from

the working data set presented in this paper. These de-measured
breakdown voltages are consistent with comparably-doped SiC pn

junction breakdowns reported in the literature (Edmond et al., 1991;
Palmour et al., 1994). The temperature variation of the dc-measured

breakdown voltage is presented later in Fig. 5. It should be noted that

the 4H diodes exhibited a small increase in dc breakdown voltage at

high temperatures, while the 6H devices exhibited an unambiguous

negative temperature coefficient of dc breakdown voltage.
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Fig. 2. DC Reverse I-V Characteristics.

Poise Testin2

Pulse bias testing was carded out using a conventional charge line circuit which nominally stressed the device

under test with rectangular-shaped pulses of 200 ns width (with - 1 ns risetime/falltime) on a manually triggered

single-shot basis. The input voltage pulse to the device under test was formed by the discharge of a semirigid coax
cable through a momentarily triggered mercury vapor switch• Device voltage and current waveforms were

simultaneously recorded and stored for each applied pulse using a dual-channel digitizing oscilloscope. Following

digital storage of the device's voltage and current waveforms recorded with each shot, the dc I-V characteristics of the

diode were re-checked with a curve tracer. The procedure was repeated with increasing pulse amplitudes until diode

damage was observed by a change in the de I-V characteristics.
Figures 3 and 4 compare room-temperature pulse-test data recorded from similarly-rated (-150 V, ~ I0 mA de)

4H-SiC and silicon pn diodes, respectively. The SiC data in Fig. 3 is representative of all pulse data collected on

some 20 SiC diodes of both polytypes over the entire 298 K to 873 K temperature range investigated• As expected,

displacement current spikes associated with the rising and falling edges of the voltage pulse are observed, as well as

non-ideal transmission-line reflection effects apparent in the 200 to 600 ns timerange. The pulsed results in Figs. 3(a

& b) & 4(a) are consistent with the measured dc I-V data in that there is no detectable conduction current and the

amplitude of the device voltage waveform matches the input voltage pulse amplitude. However, when the input

pulse amplitude was increased to 94 V for the SiC diode (Fig. 3(c)), the collapse in measured voltage coupled with
the drastic increase in conduction current indicates that the SiC device failed catastrophically less than 20 ns into the

pulse• The pulse-induced catastrophic failure of the SiC diode, which was confirmed by curve-tracer measurement

following the Fig. 3(c) pulse, is anomalous, since the dc-measured current (Fig. 2) at 100 V was less than 1 btA.

Microscopic examination of all failed SiC devices revealed highly localized damage to the device mesa and contact.

This strongly suggests that a current-filamentation type failure occurred in the bulk of the device (Ridley, 1963;
Shaw et al., 1992). When a filament occurs, the current density in a localized spot drastically increases, greatly

stressing the junction material often to the point of failure.
In sharp contrast to the SiC diode which failed at a pulse amplitude around 70% of its dc-measured breakdown

voltage, the silicon diode (Fig. 4) is able to sustain pulse amplitudes of 150% (225 V) of its de-measured breakdown

voltage. The Fig. 4 data exhibits the highly stable reverse breakdown behavior that helps make silicon power devices

highly reliable (Bell Laboratories, 1984; Ricketts et al., 1976). The measured voltage across the diode in Fig. 4(c) is

clamped in the neighborhood of 150 V, despite the fact that the input pulse amplitude (which can be measured open
circuit when no device under test is present) had been increased to 225 V. Furthermore, positive temperature
coefficient of breakdown voltage is clearly evidenced in Fig. 4(c) by the current flow decrease and device voltage

increase as the device heats up over the 200 ns pulse. Because current flow decreases as junction temperature rises,

the property of positive temperature coefficient of breakdown voltage in silicon junctions prevents the formation of
damaging high-current filaments at junction hot-spots. Diode failure occurs at t = 40 ns in Fig 4(d), as clearly

evidenced by the voltage collapse and sharp current increase.



Thegeneralbehaviorshownin Fig. 3 was observed for all SiC 200

diodes tested at temperatures of 298 K, 473 K, 673 K, and 873 K in both _ is0
4H and 6H polytypes. The pulse amplitude at which catastrophic failure "_

occurred is plotted as a function of temperature in Fig. 5, along with g 10o
dc-measured breakdown voltages. All SiC devices failed catastrophically so

at pulse amplitudes that were substantially smaller than the dc-measured
breakdown voltage.

DISCUSSION

Proposed Instability Mechanism

We have developed a preliminary hypothesis to explain the SiC
diode pulse-bias instabilities observed in this work. There is extensive

lo0 _ literature on the physics of
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Fig. 3. 4H-SiC Diode Pulse-Test
Waveforms, T = 298K.

breakdown in semiconductors,

specifically the breakdown
behavior of silicon pn

junctions (Bell Laboratories,
1984; Ricketts et al., 1976;

Shaw et al., 1992). A

significant difference between
Si and SiC is that in most

silicon devices, it is taken for

granted that all carriers are

fully ionized over the normal

operational temperature range.

In SiC however, the dopants

are energetically deep enough

that a non-trivial percentage
are un-ionized at room

temperature resulting in their
exclusion from the transport

process. Also, SiC crystal
growth technology is not yet
mature, resulting in the

presence of deep-level centers
(Mazzola et al., 1994; Pensl

and Choyke, 1993). We

believe that deep levels and/or

incomplete ionization of

dopants contribute to the
unstable SiC breakdown

behavior observed in this

work.

For simplicity, only
donor-like centers and

electrons in a partially frozen-
out n-type region of a

junction will be considered in

the following discussion.
Nevertheless, the basic
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Fig. 4. Silicon Diode Pulse-Test
Waveforms, T = 298 K.

mechanism can also be applied to various permutations of centers

(donor-like and acceptor-like) and carriers in any rectifying junction.



Before applying reverse bias to the SiC sample, a substantial number of
carriers occupying un-ionized donors and deep-level defects in quasi-neutral

regions near the depletion region edge. When a fast-risetime bias pulse is

applied, the emission of trapped carriers does not occur quickly enough to

keep up with the expanding depletion region. A significant percentage of
carriers remain briefly trapped in the high-field depletion region at t = 0 +.

These carriers thermally emit into the high-field depletion region at the

worst time causing an undesired current surge that fails the diode. At high

enough bias levels this mechanism is inferred to be a current
filamentation mechanism, because the devices failed as short-circuits and

post-failure inspections revealed highly localized damage within the bulk

diode area. As discussed by Ridley (1963) and others (Shaw et al., 1992),
current fllamentation occurs when a semiconductor exhibits S-shaped

negative differential conductivity (SNDC). The notion that carrier

emission from deep levels and frozen-out dopants can lead to SNDC,

negative temperature coefficient of breakdown, and catastrophic current
filamentation failure has been previously put forth in the literature

(Ridley, 1963; Scholl, 1982; Shaw et al., 1992). Given that carrier

emission increases with temperature, it is possible to envision

Fig. 5.
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filamentation when trapped carriers emit directly into the high-field region of a near-breakdown biased junction.

Localized heating at a hotspot causes remaining trapped carriers to emit even faster, causing more current and impact

ionization at a junction hotspot. Even though a more rigorous examination of this phenomenon is clearly in order

(such as high-field transport modeling), this initial speculative hypothesis can nevertheless serve as a starting point

for more comprehensive investigations into the observed fast-risetime pulse breakdown instabilities.

The catastrophic filamentation failure mechanism does not take place in the dc steady state case, because the bias
increase is over a long enough time period (16 ms on the curve-tracer) that most carrier ionization can take place in

an orderly fashion near the low-field edge of the expanding depletion region in relative sync with the bias signal. The
fact that the diodes were so well-behaved when de tested suggests that leakage effects from crystal defects and junction

perimeter sidewalls are probably not major contributors to the anomalous pulse-bias breakdown.

Prospects for Reliably Stable SiC Breakdown

The physical mechanisms proposed above as the primary explanation of the observed unstable SiC breakdown
behavior may not necessarily be inherent to all SiC devices. Elimination of trapped carrier emission processes should

result in reliable behavior from devices that are free of crystal defects. Cartier emission from deep levels will have to

be eliminated by improvements to epitaxial crystal growth technology. Carrier emission from dopant sites may also

need to be minimized by choosing dopants with the lowest ionization energy levels. Since conventional silicon

dopants are completely ionized over the entire U.S. military specification temperature range (218 K to 398 K), carrier
emission from dopant sites has never been an important mechanism in the high-field behavior silicon junctions.

However in wide-bandgap semiconductors such as 4H- and 6H-SiC, a significant percentage of dopants are frozen-out

around room temperature, so that carrier emission from dopant sites could perhaps contribute to the unstable

breakdown behavior. Since percent ionization increases as doping decreases, SiC devices with lighter dopings than

those employed in this work might be more likely to exhibit stable reverse breakdown behavior, if crystal defects and

deep levels are sufficiently low. After our pulse-test circuitry is improved to enable larger pulse amplitudes, we plan
to investigate a variety lighter-doped (higher voltage) SiC samples.

In the absence of extensive experimental pulsed breakdown data for a variety of SiC devices, it is difficult to

quantitatively ascertain the dopings and temperatures under which SiC might achieve a stable avalanche breakdown.
Nevertheless, if one were to make an educated guess that a semiconductor needed to be at least 90% ionized in order

to achieve avalanche stability, one could employ standard equilibrium carrier statistics calculations (Sze, 1981) to

obtain a rough first estimate of the doping-temperature space over which wide-bandgap semiconductor junctions

should theoretically have stable breakdown properties. We have constructed such a plot for 4H- and 6H-SiC in Figure

6. Since elimination of both dopant and deep-level carrier emission processes may be necessary, we have plotted the

estimated regions of breakdown stability based on three common SiC impurities: nitrogen (intentional n-dopant),
aluminum (intentional p-dopant), and the boron-related D-center (residual deep-level contaminant). For multi-level

4



impurities,thecalculationsof Fig.6 arebasedsolelyonthe looo
energeticallydeeperlevelsof theparticularimpurity,sincethe
deeperlevel will containthe mostun-ionizedcarriersat so0
equilibrium.Therefore,ionizationenergiesof0.1eVand0.145 _
eV for nitrogen in 4H and 6H (respectively), 0.2 eV for _ 600

aluminum, and 0.6 eV for the D-center (Pensl and Choyke, _
1993) were used to construct the regions of unconditional

400
breakdown stability shown in Fig. 6. The lines for each dopant

species represents where the equilibrium deeper-energy impurity 200
is theoretically 90% ionized. Therefore, a junction with doping

and temperature that lie in the region well above the 90% line

could be expected to exhibit unconditionally stable silicon-like
avalanche breakdown behavior, while junctions that lie well
below the 90% ionization lines would not exhibit unconditional

breakdown stability. For example, if a 4H-SiC power diode is to
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Fig. 6. Doping-Temperature Regions of 90%
Ionization for Unconditional Breakdown

exhibit unconditional breakdown stability at 218 K (-55 °C, Stability Criterion.
U.S. military specification), Fig. 6 predicts that somewhere
around 7 x 10]5"cm 3 would be the maximum n-type doping that could be employed in the high-field region of the

device. As one would intuitively expect, the shallowest impurity (nitrogen) results in the largest doping-temperature

region of unconditional breakdown stability in Fig. 6 for both polytypes, while the deepest impurity (the D-center)
leads to the smallest theoretical breakdown stability region. Fig. 6 is admittedly a simplistic first-order estimation,

since it ignores device-specific geometry, neglects self-heating effects, doesn't account for compensation, considers

only one level of multi-level centers, and is based upon an unproven 90% ionization stability criterion. Nevertheless,

Fig. 6 can serve as an initial starting point for envisioning the temperature-impurity conditions under which 4H- and

6H-SiC diodes might exhibit unconditionally stable reverse breakdown behavior.

It is possible that a device without deep levels whose doping lies somewhat below the 90% dopant ionization

line might exhibit partially stable (conditionally stable) breakdown behavior, in that the device could conceivably
self-heat itself into stability before a destructive current density is reached within a current filament. A conditionally

stable device might prove sufficiently reliable for high-power electronics, provided that its contact metallizations

could withstand the high localized current densities and temperatures of the brief beginnings of current filaments.

Clearly, a more thorough experimental investigation of the pulse-breakdown behavior of SiC diodes is needed.
Such an investigation could not only verify or refute the pulse-breakdown instability mechanism proposed above,
but it could also ascertain the conditions under which SiC junctions exhibit reliably stable reverse breakdown

behavior.

_?,D_LCJd2SI9__

The importance of this work is best summarized by the contrasting pulse-testing results between silicon and
SiC diodes that exhibit comparable dc breakdown voltages around 150 V. When subjected to fast-risetime bias

pulses, the SiC diode fails at pulse amplitudes of around 100 V, while the silicon diode can withstand pulse

amplitudes of over 225 V. The particular SiC devices tested above cannot be considered reliable if a single impulse

glitch of modest voltage can catastrophically fall every diode within a few nanoseconds. Since impulse glitches occur
in many kinds of power systems, it is unlikely that SiC power diodes exhibiting the unstable breakdown properties
observed in this work could be operated reliably in a system at bias points anywhere near the de breakdown voltage

the way that silicon diodes are routinely operated. Furthermore, circuits would have to be carefully designed to insure
that unstable SiC diodes would never see a single impulse glitch of sufficient amplitude to cause failure. Whether

this involves the use of additional protection circuitry, or significant device voltage derating, or both, it is likely that

there will be a significant performance, cost, and/or reliability penalty associated with compensating power circuits
for unstable device breakdown behavior. We have shown that the safe reverse voltage rating of a SiC power device

should not be solely based upon its curve-tracer measured reverse knee voltage. If SiC power devices are to replace

silicon devices in power system circuits, the unreliable breakdown behavior reported in this paper must be

eliminated. We propose that reliable SiC junction breakdown behavior can be achieved by eliminating or minimizing

carrier emission from deep levels and/or un-ionized dopants.
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